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Abstract

The samples of the complex modulation envelope I+jQ typically required in coher-

ent communication are sometimes obtained without cumbersome analog hardware by

bandpass sampling the IF signal. Most published systems offer limited design flexibility,

especially in the design of the digital filtering that ultimately determines system per-

formance. We present here a generalization of such systems (derived from the analog

modulator that it replaces) along with a mathematically equivalent system that simplifies

analysis. By combining most design choices into a single equivalent filter response, the

intuition of the filter designer can go far towards suggesting suitable approaches for in-

dividual applications, while the large number of available digital-filter design tools makes

custom design practical. Two examples demonstrate a simple approach to design using

available tools.

1 Introduction

A common procedure in communication and radar systems (among others) is the demodulation

of passband signals to baseband. Traditionally, a pair of analog mixers driven by quadrature

carriers is used to demodulate the I and Q components of the signal in two parallel arms. Identical

analog lowpass filters then follow the mixers, with their output often sampled for digital processing.

The analog hardware in this classic quadrature demodulator presents a stiff challenge: it requires

carriers in perfect quadrature and responses must be matched between the I and Q arms. Mixer

nonlinearities, component drift, mismatched filter responses, and quadrature carrier mismatches

are all potential sources of error. The rise in performance in digital-signal-processing hardware

and A/D converters offers an alternative: directly sample the bandpass signal, and use digital

processing to recover the complex modulation envelope. By using a single A/D to sample the IF

signal directly, mismatch between signal paths is eliminated, as is the need for quadrature carriers.

Thereafter all processing enjoys the precision of the digital domain.

The idea of directly sampling a bandpass signal for demodulation is not new. In the 1950’s

Kohlenberg [1] and Linden [2] described sampling theorems for first and second order sampling and

reconstruction of bandpass waveforms. More recently, Coulson [3] extended these sampling theo-

rems and implemented them digitally by sampling the interpolating functions. The first attempts

to implement these ideas appear to be separate efforts by Waters and Jarrett [4] and Rice and Wu

[5], published in the same issue in 1982 and describing essentially identical systems. Both describe



systems that replace the I and Q arms of the analog demodulator with two separate sampling and

filtering arms. Many papers since have described similar or identical systems: [6–12] is a partial

list. In 1984 Rader [13] introduced a different sampling scheme that involved sampling at four

times the IF frequency, digitally filtering and decimating by four. Although this can be viewed as a

bandpass sampling system, it is also a conventional lowpass sampling system by virtue of sampling

at twice the highest frequency of the bandpass input. Rader used IIR filters in his paper; Mitchell

[14] extended it to FIR filters, and Ward [15] used a least-mean-square-error statistical model for

filter design. Other systems similar to Rader’s are described in [16–18]. Pohlig [19], presents a

different implementation which appears to be unique in the literature. Each system is potentially

limited by specific requirements on key system parameters and filter types (Pohlig [19] hints at

some of the generalizations presented here), and only [18] considers spectral shaping as part of the

filtering process.

The ability to intuitively and intelligently design such systems requires a model that is simulta-

neously simple, general, implementable, and that allows a straightforward approach to filter design.

As performance of the system inevitably hinges on the latter, the presented model emphasizes an

approach in which most design choices are collapsed into a single equivalent filter response.

This paper is presented in three sections. The first section lays out some basic signal-processing

system transformations that will be used in the second section, where both an analytical model and

two implementations will be derived from the classic analog demodulator. The last section presents

some design examples to demonstrate how available filter-design tools can be used to effectively

design systems of varying complexity.

2 System Transformations

In the process of deriving the system and its analytical model, several system transformations

will be used. This section offers a brief description of the important non-trivial transformations

to be applied. Although presented in one direction, each is actually an equivalence which applies

equally in both directions.

2.1 Sampling and digital filtering ↔ TDL filtering and sampling

The analysis of hybrid analog/digital systems is often complicated by the fact that the digi-

tal and analog filtering sections are separated by the sampler and its associated aliasing effects.

Through this transformation, the digital filter following the sampler is moved back through the

sampler, producing an analog tapped-delay-line (TDL) filter whose taps are spaced the same as the

sampling rate and whose tap weights are just the coefficients of the digital filter. The cascade of the

resulting periodic frequency response with preceding analog filters can then be readily seen.

g[n]
nTs

y[n]x(t) g(t)
nTs

y[n]x(t)

Trans. 1: Discrete-time filtering is moved before the sampler, forming an

analog tapped-delay-line (TDL) filter.



The impulse response of the TDL filter is g(t) =
∑

k g[k]δ(t − kTs), and its frequency response

is G(f) =
∑

k g[k]e−j2πkTsf . The frequency response of the TDL filter is identical to that of its

discrete-time counterpart except the former has an unnormalized frequency variable f , while the

latter has a frequency variable normalized by sampling rate 1/Ts. The equivalence between the two

above systems can be shown by direct evaluation of their outputs. In the first, output y[n] is the

result of the discrete-time convolution of sequences x(nTs) and g[n]:

y[n] =
∑

k

g[k]x((n − k)Ts). (1)

In the second system, the output is samples of the continuous-time convolution of x(t) and g(t),

y[n] = (x ~ g)(nTs), which evaluates to (1).

2.2 Sampler followed by decimator

This simple transformation allows a sampler and a decimator to be combined into lower rate

sampling.

M
nTs

x(t) y[n]x(t)

nTs

M

y[n]

Trans. 2: Sampling and decimation combine to form lower-rate sampling.

2.3 Moving multipliers

Often it is desirable to move multipliers to one end of a system, so that the rest of the system

becomes a baseband or passband equivalent. Moving a continuous-time multiplier past a sampler

makes it a discrete-time multiplier.

x(t)

nTs

y[n]

f(t)

nTs

f(nTs)

x(t) y[n]

Trans. 3: Exchanging a multiplier and a sampler.

By defining the resulting multiplier input sequence in terms of the continuous-time function f(t),

the transformation is made reversible.

Moving a discrete-time multiplier past a decimator decimates the multiplier’s input.

M Mx[n] y[n]

f(nT ) f(nMT )

x[n] y[n]

Trans. 4: Exchanging a multiplier and a decimator.



Again, defining the multiplier input sequence in terms of a continuous-time function f(t) allows

the transformation to be reversed.

Finally, a frequency shift (a multiplication by a complex exponential) can be moved past a filter

by applying an opposite shift to the filter response.

ej2πf0t

x(t) y(t) y(t)

ej2πf0t

g(t) x(t) g(t)e−j2πfot

Trans. 5: Exchanging a frequency shift and a filter.

An identical relationship holds for discrete-time.

3 System Derivation

Using the transformations presented in Section 2, this section will derive a practical and simple

IF-sampling demodulation architecture from the classic combination of analog demodulation and

sampling. Along the way, an convenient equivalent system will be derived that simplifies analysis.

Figure 1(a) shows the classic quadrature demodulator, followed by I/Q sampling, digital fil-

g[n]

g[n]

BPF

LPF

LPF

M

M

I

Q

nTs

M

nTs

M

cos(2πfct)

− sin(2πfct)

IF

(a) Real signal representation.

g[n]BPFIF

e−j2πfct

LPF
nTs

M

I+jQM

(b) Complex signal representation.

BPF L̂PF
nTs

M

M

e−j2πfcTsn

IF ĝ[n] I+jQ

(c) Multiplication moved to discrete-time.

Figure 1: Real (a) and complex (b) signal representations of the classic analog demodulator with

I-Q sampling and symbol-rate subsampling. Moving the multiplier right (c) makes it digital, but

leaves behind the complex-impulse-response L̂PF. Double lines indicate complex quantities.



BPFIF

e−j2πfct

LPF I+jQ
nTs

g(t)

(a) Sampling and digital filtering are swapped, and the sampling and decimation combine.

BPFIF I+jQ
nTs

L̂PF ĝ(t)

e−j2πfct

(b) The multiplier is moved past the filters.

BPF ĝ(t) I+jQIF
nTs

e−j2πfct

(c) With proper design of ĝ(t),
�

LPF is no longer needed.

Figure 2: Transforming the analog demodulator to a system that requires no lowpass filter.

tering, and symbol-rate subsampling (decimation). Figure 1(b) is a convenient complex-signal

representation of the quadrature demodulator. Since the performance of such a demodulator is of-

ten limited by the analog processing steps, a straightforward improvement is to move the multiplier

to the right (using the transformations) past the LPF and the sampler so that a digital multiplier

results. Optionally, it might be moved to the output, as in Fig. 1(c). The result is a new system

in which both the lowpass filter LPF and the digital filter g[n] have been shifted up in frequency.

The impulse response LPF(t) is replaced with response L̂PF(t) = LPF(t)ej2πfct and g[n] is replaced

with ĝ[n] = g[n]ej2πnfcTs/M , resulting in complex impulse responses for both filters.

If not for the complex analog filter L̂PF, the system of Fig. 1(c) would be practical to implement.

In fact, by rearranging the system in a manner more conducive to analysis, it can be shown that L̂PF

is not needed at all. A straightforward approach to the analysis of hybrid analog/digital systems

of this sort is to transform them such that all the filter responses are in cascade. This allows the

overall shaping and suppression requirements to be easily seen. The first step is to exchange the

sampler and the digital filter g[n], resulting in TDL filter g(t) followed by the sampler. This sampler

can then be combined with the decimator, resulting in the system of Fig. 2(a). The multiplier still

separates the bandpass filter from the other two, so it is moved right past both the lowpass filter

and the TDL filter in Fig. 2(b). Both filter responses are oppositely shifted as a result, and the

new responses are labeled L̂PF and ĝ(t) as before.

Now that the three filters are in direct cascade, a spectral argument provides insight on the

roles of the three filters. Figure 3 shows a set of example spectra for the system of Fig. 2(b). The

IF signal shown has a root-raised-cosine shape with 50% excess bandwidth. The dotted signals

represent adjacent channels. The cascade of the three filters BPF, L̂PF, and Ĝ(f) must pass and

shape only the desired positive-frequency lobe of the IF signal. As can be seen from the plots, L̂PF

is not needed if a stopband of Ĝ(f) is placed in the same spectral region as the negative-frequency
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Figure 3: Example spectra that describe Figs. 2(b) and 2(c). Dashed lines indicate conjugation.

Dotted lines represent adjacent channels.

BPF MIF I+jQ

e−j2πfcTsn

nTs

M
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Figure 4: Final IF-sampling demodulator architecture.

portion of the BPF (and the IF signal). This can be done if there is enough available spectral

control remaining after placing a passband in Ĝ(f) to shape the desired positive-frequency portion

of the IF signal. The response Ĝ(f) is periodic with a period that is M times greater than the

symbol rate (corresponding to the input sampling rate), so increasing M (the example uses M = 5)

allows control over a larger bandwidth. However, the period of Ĝ(f) must also be chosen such that

none of the periodic replicas of its passband overlap the stopband region, or the two regions will

conflict regardless of the total available design bandwidth. An important result is that the rate at

which the IF signal is sampled (the input sampling rate Mfs) is dependent on the bandwidth of

the complex envelope and thus is not required to be twice the highest frequency of the IF, as in

a conventional sampling system. The filter L̂PF has been removed from the system of Fig. 2(c),

which is a convenient system for design.

Having shown that proper design of ĝ[n] (indirectly through design of ĝ(t)) eliminates the need

for filter L̂PF, said filter can be removed from Fig. 1(c). Figure 4 shows the final demodulator

system, which is exactly equivalent to Fig. 2(c). This system directly samples the output of a

bandpass filter (possibly the equivalent response of previous stages) and performs digital filtering,



decimation, and frequency shifting. The filtering and decimation can be efficiently implemented by

only calculating the samples to be kept, or through the use of a polyphase filter bank [20].

4 Design Examples

This section explores some simple approaches to choosing the system parameters and designing

the digital filter g[n]. Since the system of Fig. 2(c) is more amenable to direct design, the digital filter

will be designed indirectly through design of the TDL filter g(t). The first example shows how simple

design tools such as the Parks-McClellan algorithm [21] can be used to design the demodulator filter.

A second example will present a more sophisticated linear programming approach.

4.1 A General Approach

A simplifying assumption that will be used in this paper is that the bandpass filter has done

its job perfectly, and that only the desired real bandpass signal appears at the sampler input. This

bandpass signal can be written as P (f −fc)+P ∗(−f −fc), a shifted version of the desired complex

envelope response P (f) and its conjugate reflection. The desired output of the filter response G(f)

is P (f−fc)D(f), the shifted envelope times some ideal desired function D(f) that is often the match

to the transmitted pulse. One simple approach would be to design G(f) with as deep a stopband

as possible in the region occupied by the conjugate reflection P ∗(−f − fc) while approximating

D(f) as closely as possible (perhaps in an equiripple sense) in the region occupied by P (f − fc).

This intuitive approach allows the designer to choose the relative importance of performance in the

passband and stopband regions.

A somewhat more sophisticated approach would be to minimize the difference between the

actual filter output and the ideal output. This error term is

P (f − fc)[D(f) − G(f)] − P ∗(−f − fc)G(f), (2)

with the first term representing error in the passband and the second term representing error in

the stopband. This error might be minimized in the L1, L2, L∞ or other sense as suggested

by the application (or dictated by the design tools). Minimizing the L2 norm (energy) of the

error is a natural approach that requires quadratic optimization An L1 norm, which places greater

emphasis on regions of lesser magnitude than does an L2, can be efficiently minimized using linear

programming. Linear programming or the Parks-McClellan algorithm can be used to minimize the

L∞ norm of the error, producing an equiripple error term.

4.2 Design Using Parks-McClellan

In this example, a 1MHz symbol rate signal with 35% excess-bandwidth root-raised-cosine

pulse shaping is to be demodulated from an IF carrier frequency of 2.25MHz. Filter response G(f)

must therefore be designed to matched-filter the incoming signal over a 1.35MHz band centered at

2.25MHz, while suppressing an equal interval centered around −2.25MHz. The total independent

response specification is therefore 2.7MHz, so a filter response period (input sampling rate) of at

least three times the symbol rate is needed for adequate spectral control. If the period is chosen

to be 3MHz then (by design) the carrier frequency is such that after placing a passband there the

stopband region is symmetrically located between two successive copies of the passband, allowing
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Figure 5: Filter frequency response, passband ripple, and error spectrum for Parks-McClellan design

example.

independent specification of the stopband while leaving small transition bands. This symmetry, and

the fact that the desired root-raised-cosine response is real and symmetric about frequency fc, allows

the use of the Parks-McClellan algorithm to design a real, linear phase baseband demodulation filter

that can then be shifted to the passband.

The Parks-McClellan algorithm allows the design of real coefficient, linear phase FIR filters that

are optimal in an equiripple sense. Specifically, the algorithm minimizes the maximum weighted

error between the filter response and some desired function. Mathematically, the algorithm finds{
G(f) : min{max{W (f)[D(f) − G(f)]}}

}
, where W (f) is some real-valued weighting function,

D(f) is a real-valued desired response, and G(f) is the response of the filter under design. If

W (f) is defined to be the incoming pulse P (f − fc) + P ∗(−f − fc), then this represents the L∞

minimization of (2).

The usual implementations of Parks-McClellan only allow specification of D(f) and W (f), and

therefore G(f), on the normalized interval [0, 0.5], since the filter period and symmetry then define

the response everywhere. Since the design calls for a filter that is specified on disjoint intervals

outside [0, 0.5] and that is symmetric about fc and not 0, modified versions of the desired function

and weighting function are needed. A straightforward way to obtain D(f) and W (f) on the proper

interval is to periodically extend the desired response (P (f − fc), a root-raised-cosine centered at

fc) and the weighting function (P (f − fc) + P ∗(−f − fc), two root-raised-cosines centered at fc

and −fc) by the period of filter G(f) (3MHz), and then to shift both functions left by fc. The

interval [0, 1.5MHz] of the resulting functions then represents the D(f) and W (f) needed by the

optimization routine. After the filter is designed it can be shifted to its passband location by

multiplying the taps by ej2πnfc/3 MHz.

A 23-tap linear phase FIR filter was designed using the presented approach. Figure 5 shows the

resulting response G(f), the ripple in the flat portion of the passband, and the error term of (2).



This third plot shows that the error response is indeed equiripple.

4.3 Design Using Linear Programming

A more powerful design tool than Parks-McClellan for FIR filter design is linear programming.

A linear program can minimize or maximize any function that is linear in the optimization variables

(filter taps) subject to any (non-conflicting) linear constraints. The ff linear-programming language

[22] will be used here to redo the design of the previous section, but with a different approach to

minimizing the error term of (2). Additionally, the filter will be designed to null any DC errors

from the A/D converter.

The code for the ff program will be presented, with discussion, in several parts. This first

portion defines some constants to be used later in the program.

Let s = 1, let c = 2, and let MHz = 1.

Index T from 1 to 2, let Ts = 1
1 MHz , and let Tc = 1

2.25 MHz .

Let M = 3, and let N = 12.

The filter to be designed will again be a 23-tap linear-phase filter, but now the coefficients can be

complex.

Index g from 0 to N − 1, and let (g,G) be a Fourier transform pair.

Let g0 be an optimized, real tap at 0 delay, and

let g1, . . . , gN−1 be optimized, complex tap pairs at ± Ts

M , . . . ,±(N − 1)Ts

M delay.

This code defines the TDL filter structure in terms of an array of optimization variables. The taps

here are given symmetric spacing about t = 0 for convenience. Function G(f) is defined to be the

response of the filter.

Interpolate P from real file ”RRC.dat” with spacing M
4000Ts

from − M
4Ts

.

Let α = 0.35.

This code defines the function P (f) by linearly interpolating between values read from a datafile.

These data values were calculated elsewhere as a root-raised cosine with an excess bandwidth of α.

The approach that will be taken will be to minimize the L1 norm of the error term given in

(2). Choosing the desired response D(f) to be the match to the transmitted pulse P (f − fc), the

function to be minimized is
∫ ∣∣P (f − fc)[P

∗(f − fc) − G(f)] − P ∗(−f − fc)G(f)
∣∣df.

The function P (f) is real, so P (f) = P ∗(f). Since the integrand is nonzero only over two disjoint,

finite regions (namely the intervals ±[fc − 1+α
2Ts

, fc + 1+α
2Ts

], where α is the excess bandwidth of

P (f)) the integral can be approximated by two summations over appropriate grids of frequencies.

Minimizing the sum

∑

k

∣∣P (f+
k − fc)[P

∗(f+
k − fc) − G(f+

k )]
∣∣ +

∑

k

∣∣P ∗(−f−

k − fc)G(f−

k )
∣∣, (3)

where the frequencies f+
k are on a grid covering the passband, and the frequencies f−

k cover the

stopband region, approximately minimizes the integral. This sum is not itself linear in the filter



taps, but it can be minimized using two sets of non-negative auxiliary optimization variables β and

γ. Enforcing the linear constraints

−βk ≤ P (f+
k − fc)[P

∗(f+
k − fc) − G(f+

k )] ≤ βk

−γk ≤ P ∗(−f−

k − fc)G(f−

k ) ≤ γk

allows minimization of the sum of the auxiliary variables to minimize (3).

Let L = 45, index β from −L to L, index γ from −L to L,

let β−L, . . . , βL be optimized and bounded below by 0, and

let γ−L, . . . , γL be optimized and bounded below by 0.

This code declares the auxiliary optimization variables β and γ. The parameter L controls the

resolution of the frequency grid over which the summations are performed. The choice of L was

determined experimentally. A smaller value would introduce errors in the integral approximation,

while a larger value would just force more computation.

Require G(0) = 0.

For each k = −L, . . . , L, let f = T−1
c + k

L

(
1+α
2Ts

)
, and

require |P (f − T−1
c )[P (f − T−1

c ) − G(f)]| ≤ βk.

For each k = −L, . . . , L, let f = −T−1
c + k

L

(
1+α
2Ts

)
, and

require |P (−f − T−1
c )G(f)| ≤ γk.

Minimize
∑L

k=−L(βk + γk), and

write ”L1 error=”, 1+α
2(2L+1)Ts

∑L
k=−L(βk + γk) to report.

For each n = N − 1, . . . , 1, write <(gn),” ”,−=(gn) to output.

For each n = 0, . . . , N − 1, write <(gn),” ”,=(gn) to output.

This final code fragment performs the minimization just discussed. The first constraint places a

null in G(f) at DC. Since the filter being designed immediately follows the sampler, a null in the

DC response of the filter will serve to cancel any A/D DC errors. This constraint does, however,

use up a degree of freedom, and it causes the filter response to be asymmetric (although a second

null could be placed to maintain the symmetry). The next four lines define the frequency grid and

set the constraints on the optimization variables β and γ. The “Minimize” line tells the interpreter

to perform the optimization, minimizing the sum of the auxiliary optimization variables (and in so

doing, the L1 norm of the error). Finally, the value of the L1 norm and the optimized filter taps

are written out. Figure 6 shows the resulting filter response, passband ripple, and error spectrum.

Comparing these results to those using Parks-McClellan shows that the L1-minimized filter has

greater suppression over most of the stopband, and less ripple over most of the passband. These

gains were achieved with a modest loss in performance near the transition bands. The second

filter does not drop off as rapidly as the first, which shows up as peaks the error term near the

transitions. The error terms show that, although the error in the second filter is less than the error

in the first for almost all frequencies, it does peak up higher briefly in the passband. Thus both

filters are optimum in the sense in which they were designed, and the application would dictate

which (if either) is more suitable.



G(f)

f (MHz)

d
B

43210-1-2-3-4

0

-20

-40

-60

-80

-100

Error Spectrum

f (MHz)

d
B

43210-1-2-3-4

-40

-60

-80

-100

Passband

f (MHz)

d
B

2.52.252

0.04
0.02

0
-0.02
-0.04

Figure 6: Filter frequency response, passband ripple, and error spectrum for linear-programming

design example.

4.4 Other Design Approaches

The examples presented here are much simplified, and as such only scratch the surface of

available design tools and methods. One drawback of this error-minimization design approach

is that it is not immediately clear how the “error” term relates to system performance metrics

such as bit-error-rate or intersymbol interference. When such measures are of interest, the more

sophisticated linear-programming techniques found in [22] can be easily adapted to the current

system. It is rare for a system to contain only a single, isolated filter, and so the cascade response

of all the filtering steps may be more important than the single digital filter response designed

in the examples. Examples of the direct design of analog-digital cascade responses can also be

found in [22]. Certainly other tools than Parks-McClellan and linear programming exist for the

design of FIR filters: the eigenfilter method [23] and semidefinite programming [24] are examples

of techniques that allow quadratic optimization.
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